Echinophyllins C-F, New Nitrogen-Containing Clerodane Diterpenoids from Echinodorus macrophyllus

Jun'ichi Kobayashi,*^{,†} Mitsuhiro Sekiguchi,[†] Sayaka Shimamoto,[†] Hideyuki Shigemori,[†] and Ayumi Ohsaki^{*,‡}

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, and Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan

Received July 17, 2000

Four new nitrogen-containing clerodane diterpenoids, echinophyllins C-F (1-4), were isolated from the leaves of the Brazilian medicinal plant Echinodorus macrophyllus ("Chapéu-de-couro"), and their structures and relative stereochemistry were elucidated from their spectroscopic data. Compounds 1-4possess an α,β -unsaturated γ -lactam ring consisting of a clerodane diterpene unit and an amine moiety.

In our search for structurally unique compounds from Brazilian medicinal plants,¹ echinophyllins A (5) and B (6), with an α,β -unsaturated γ -lactam ring consisting of a clerodane skeleton and an amine moiety, have been isolated from the leaves of Echinodorus macrophyllus.² This plant is known in Brazil as "Chapéu-de-couro" and used to treat difficulties in urination, hepatitis, and rheumatism. Further investigation on extracts of the leaves of this plant have led to the isolation of four new nitrogen-containing diterpenoids with a clerodane skeleton, echinophyllins C-F (1-4). In this paper we describe the isolation and structure elucidation of 1-4.

The leaves of the Brazilian medicinal plant *Echinodorus* macrophyllus (Kunth) Micheli (Alismataceae) were extracted with MeOH. The MeOH extracts were partitioned between hexane and 90% aqueous MeOH, and then the MeOH-layer was partitioned with EtOAc and H₂O. The H₂O layer was extracted with *n*-BuOH. The EtOAc-soluble portions were subjected to passage over a Si gel column (CHCl₃-MeOH, 96:4) and then over a reversed-phase column (MeOH-H₂O, 70:30 \rightarrow MeOH) to afford an alkaloidal fraction, which was purified by Si gel column chromatography (hexane-acetone, $1:1 \rightarrow 1:5$) to give echinophyllins A (5) and B (6) and another alkaloidal fraction. The latter alkaloidal fraction was purified by reversedphase HPLC (CH₃CN-H₂O, 60:40 or CH₃CN-H₂O, 50:50 containing 0.1% TFA) to afford echinophyllins C (1, 0.0085%), D (2, 0.0061%), E (3, 0.0069%), and F (4, 0.0037%), together with known clerodane diterpenes, clerodermic acid³ (0.0061%) and patagonic acid^{4,5} (0.0056%). A further known compound, chichoric acid dimethyl ether,⁶ was obtained from the *n*-BuOH-soluble portions.

The molecular formula, C₂₀H₂₉NO₃, of echinophyllin C (1) was established by HRFABMS $[m/z 332.2238 (M + H)^+,$ Δ +1.2 mmu]. The IR spectrum implied the presence of hydroxy (3423 cm⁻¹) and unsaturated carbonyl (1680 cm⁻¹) groups. The gross structure of 1 was deduced from detailed analysis of the ¹H and ¹³C NMR data (Table 1) aided with 2D NMR experiments (1H-1H COSY, HMQC, and HMBC). The ¹³C NMR data indicated that the molecule possessed one unsaturated carboxylic carbon, one unsaturated lactam carbonyl, two trisubstituted olefins, two sp³ quaternary

20 В ĊO₂H 1 $X = H_2, Y = O$ 4 $X = O, Y = H_2$ 2 X = O, Y = H_2 5 X = H₂, Y = Ō OH. ö CO₂H ×7 .. v ~

он

$$3 X = 0, Y = H_2$$

 $6 X = H_2, Y = 0$

carbons, seven methylenes, two methines, and three methyl groups. The ¹H-¹H COSY spectrum revealed connectivities (Figure 1) of C-1 to C-3 and C-10, C-6 to C-8 and C-17, C-11 to C-12, and C-14 to C-15. HMBC correlations (Figure 1) of H₃-19 to C-4, C-5, C-6, and C-10 and of H-10 to C-5 revealed the presence of a cyclohexene ring (ring A), in which a carboxyl group and Me-19 were attached to C-4 and C-5, respectively. The presence of a cyclohexane ring (ring B) with Me-17 at C-8 and Me-20 at C-9 was elucidated by HMBC correlations of H₃-20 to C-8, C-9, and C-10; of H₃-17 to C-9; and of H-10 to C-9. The HMBC correlation of H₃-20 to C-11 allowed the connectivity between C-9 and C-11 to be established. Cross-peaks of H-14 to C-16 (δ_{C} 177.7), H₂-15 ($\delta_{\rm H}$ 3.91, br s) to C-13 ($\delta_{\rm C}$ 147.4) and C-16, and $H_{2}\text{-}12$ to C-13 and the chemical shift of C-15 (δ_{C} 48.6) revealed the presence of an α,β -unsaturated γ -lactam ring

10.1021/np000355w CCC: \$19.00 © 2000 American Chemical Society and American Society of Pharmacognosy Published on Web 10/21/2000

^{*} To whom correspondence should be addressed. Tel.: +81-11-706-4985. Fax: +81-11-706-4989. E-mail: jkobay@pharm.hokudai.ac.jp (J.K.) or Tel.: +81-3-5280-8153. Fax: +81-3-5280-8005. E-mail: a-ohsaki@ i-mde.tmd.ac.jp (A.O.). † Hokkaido University

[‡] Tokyo Medical and Dental University.

Table 1. ¹H and ¹³C NMR Data of Echinophyllins C (1), D (2), E (3), and F (4) in CD₃OD

	1		2		3		4	
position	$^{1}\mathrm{H}^{a}$	$^{13}C^a$	$^{1}\mathrm{H}^{a}$	¹³ C ^a	$^{1}\mathrm{H}^{a}$	$^{13}C^a$	$^{1}\mathrm{H}^{a}$	$^{13}C^a$
1 (a) (b)	1.49 (m)	19.5	1.63 (m) 2.26 (m)	18.7	1.63 (m)	19.3	1.55 (m)	18.7
2	2.23 (m)	28.7	2.17 (m)	28.5	2.25 (m)	28.8	2.28 (m)	28.5
3	6.43 (brs)	134.9	6.43 (brs)	130.5	6.70 (brs)	139.1	6.50 (brs)	136.5
4		141.7		148.0		142.9		145.0
5		39.4		37.7		38.3		37.6
6 (a)	2.93 (dd, 3.0, 10.0)	38.5	2.28 (m)	37.6	2.41 (m)	37.9	2.40 (m)	37.5
(b)	1.20 (m)		1.20 (m)		1.15 (m)		1.21 (m)	
7 (a)	1.51 (m)	28.0	1.47 (m)	27.7	1.47 (m)	28.8	1.56 (m)	28.0
(b)	1.41 (m)		1.43 (m)		1.45 (m)		1.45 (m)	
8	1.59 (m)	38.2	1.49 (m)	37.4	1.55 (m)	35.4	1.59 (m)	37.2
9		40.7		39.9		38.4		40.0
10	1.32 (m)	48.8	1.39 (m)	47.7	1.38 (m)	48.9	1.40 (m)	48.1
11 (a)	1.66 (m)	38.4	1.59 (m)	38.5	1.78 (m)	38.2	1.73 (m)	38.7
(b)			1.32 (m)		1.50 (m)		1.60 (m)	
12 (a)	2.17 (m)	20.7	2.07 (m)	21.4	2.28 (m)	21.9	2.38 (m)	24.1
(b)	2.07 (m)		2.03 (m)		2.24 (m)		2.27 (m)	
13		147.4		148.0		142.8		146.0
14	6.87 (s)	140.4	5.77 (s)	121.1	5.85 (s)	122.0	5.72 (s)	121.0
15	3.91 (brs)	48.6		174.2		172.1		177.6
16		177.7	3.78 (s)	56.8	3.87 (s)	49.8	3.91 (s)	51.9
17	0.84 (m)	17.2	0.81 (m)	16.4	0.88 (d, 6.0)	17.0	0.75 (d, 6.0)	16.4
18		174.9		173.0		172.1		171.8
19	1.28 (s)	22.1	1.29 (s)	23.9	1.30 (s)	19.3	1.18 (s)	21.2
20	0.78 (s)	19.5	0.78 (s)	20.0	0.83 (s)	17.1	0.72 (s)	18.8
1′			3.60 (t, 7.1)	45.1	3.60 (m)	40.9		
2′			2.71 (t, 7.1)	34.9	1.65 (m)	29.2		
3′				130.8	1.65 (m)	29.2		
4'			6.56 (d, 8.3)	116.2	3.47 (m)	38.4		
5'			7.00 (d, 8.3)	130.7		165.1		
6′				157.3	6.48 (d, 15.0)	117.3		
7′			7.00 (d, 8.3)	130.7	7.49 (d, 15.0)	140.3		
8′			6.56 (d, 8.3)	116.2		125.5		
9′					7.16 (s)	112.4		
10′						145.3		
11′						146.3		
12'					6.84 (d, 7.0)	112.4		
13′					7.07 (d, 7.0)	122.0		
MeO-10'					3.93 (s)	57.2		

^{*a*} δ in ppm.

Figure 1. Selected ¹H-¹H COSY, HMBC, and NOESY correlations for echinophyllin C (1).

(C-13 to C-15, C-16, and N-15) connected between C-12 and C-13. Thus, the planar structure of echinophyllin C could be determined. NOESY correlations (Figure 1) of H₃-19 to H₃-20, H₃-17 to H-7a and H-7b, H-6b to H-8 and H-10, H-8 to H-11b, and H-10 to H-11a indicated a chair conformation of ring B, a trans relationship between rings A and B, α -orientations of Me-17, Me-19, and Me-20, and a β -orientation of H-10. Therefore, the relative stereochemistry of echinophyllin C was assigned as **1**.

Echinophyllin D (**2**) showed a pseudomolecular ion peak at m/z 452 (M + H)⁺ in the FABMS. HRFABMS analysis revealed the molecular formula to be C₂₈H₃₇NO₄ [m/z

452.2770 (M + H)⁺, Δ –3.1 mmu], which was the same as that of echinophyllin A (5). The ¹H and ¹³C NMR spectra of **2** were very similar to those of echinophyllin A (5) except for an α , β -unsaturated γ -lactam ring (C-13–C-15, C-16, and N-15). The ¹H–¹H COSY spectrum revealed connectivities of C-1 to C-3 and C-10, C-6 to C-8 and C-17, C-11 to C-12, C-1' to C-2', C-4' to C-5', and C-7' to C-8' (Figure 2). Cross-peaks of H₂-16 to C-13 (δ_C 148.0) and C-15 (δ_C 174.2), H-14 to C-15 and the chemical shift of C-16 (δ_C 56.8) indicated a γ -lactam ring (C-13 to C-15, C-16, and N-15) to be present. Proton signals at δ_H 3.60 (2H, t, J = 7.1 Hz, H₂-1'), 2.71 (2H, t, J = 7.1 Hz, H₂-2'), 6.56 (2H, d, J = 8.3

Figure 2. Selected ${}^{1}H^{-1}H$ COSY and HMBC correlations for echinophyllin D (2).

Hz, H-4' and H-8'), and 7.00 (2H, d, J = 8.3 Hz, H-5' and H-7'), a phenol carbon signal at $\delta_{\rm C}$ 157.3 (C-6'), and HMBC correlations of H₂-2' to C-3', H-5' to C-3', and H-4' to C-6' revealed the presence of a tyramine moiety (C-1'–C-8', N-15, and 6'-OH). A NOESY experiment, performed on echinophyllin D in the same manner as described for 1, enabled the relative stereochemistry of this compound was assigned as **2**.

Echinophyllin E (3) showed the pseudomolecular ion peak at m/z 579 (M + H)⁺ in the FABMS. HRFABMS analysis revealed the molecular formula to be C₃₄H₄₆N₂O₆ $[m/z 579.3413 (M + H)^+, \Delta -3.6 \text{ mmu}]$. The ¹H and ¹³C NMR spectra of 3 were very similar to those of echinophyllin B (6) except for an α,β -unsaturated γ -lactam ring (C-13-C-15, C-16, and N-15). ¹H-¹H COSY connectivities of C-1' to C-4' and N-4' and proton signals at $\delta_{\rm H}$ 3.93 (3H, s, MeO-10'), 6.84 (1H, d, J = 7.0 Hz, H-12'), 7.16 (1H, s, H-9'), 7.07 (1H, d, J = 7.0 Hz, H-13'), 6.48 (1H, d, J = 15.0 Hz, H-6'), and 7.49 (1H, d, J = 15.0 Hz, H-7'; trans-oriented) revealed the presence of an *N*-feruloylputrescine moiety. Proton signals at $\delta_{\rm H}$ 5.85 (1H, s, H-14) and 3.87 (2H, s, H₂-16) and carbon signals at $\delta_{\rm C}$ 142.8 (C-13), 122.0 (C-14), 172.1 (C-15), and 49.8 (C-16) indicated the presence of β -substituted α , β -unsaturated γ -lactam ring (C-13 to C-15, C-16, and N-15). Thus, the structure of echinophyllin E was elucidated as 3. The relative stereochemistry of the clerodane diterpene moiety of 3 was assigned in the same manner as echinophyllin B (6) by NOESY correlations.

The molecular formula, C₂₀H₂₉NO₃, of echinophyllin F (4) was established by HRFABMS $[m/z 332.2217 (M + H)^+,$ Δ –0.9 mmu], which was the same as that of echinophyllin C (1). The IR spectrum implied the presence of hydroxy group (3423 cm⁻¹) and α , β -unsaturated γ -lactam ring (1678 cm⁻¹). The ¹H and ¹³C NMR spectra of **4** were very similar to those of echinophyllin C (1) except for the signals of the α,β -unsaturated γ -lactam ring (C-13–C-15, C-16, and N-15). Proton signals at $\delta_{\rm H}$ 5.72 (1H, s, H-14) and 3.91 (2H, s, H₂-16), carbon signals at $\delta_{\rm C}$ 146.0 (C-13), 121.0 (C-14), 177.6 (C-15), and 51.9 (C-16); and HMBC correlations of H-14 to C-12, C-13, C-15, and C-16 and H₂-16 to C-13, C-14, and C-15 indicated the presence of β -substituted α,β unsaturated γ -lactam ring (C-13 to C-15, C-16, and N-15) connected between C-12 and C-13 (see Figure 3). Thus, the structure of echinophyllin F was elucidated as 4, with the relative stereochemistry determined from NOESY correlations, which were almost the same as those observed for echinophyllin C (1).

Notes

Figure 3. Selected HMBC correlations for echinophyllin F (4).

Echinophyllins C–F (**1**–**4**) are new nitrogen-containing diterpenoids with an α,β -unsaturated γ -lactam ring consisting of a clerodane skeleton and an amine moiety, which have been isolated from the Brazilian medicinal plant *E. macrophyllus*. Biogenetically, echinophyllins C (**1**) and F (**4**) may be derived from patagonic acid^{4,5} or clerodermic acid³, respectively, and ammonia, while echinophyllins D (**2**) and E (**3**) may be generated from the clerodermic acid³ and a tyramine or *N*-feruloylputrescine, respectively.

Experimental Section

General Experimental Procedures. Optical rotations were determined on JASCO P-1030 polarimeter. UV and IR spectra were obtained on JASCO Ubest-35 and JASCO FT/IR-230 spectrometers, respectively. The 3.35 and 49.8 ppm resonances of residual MeOH- d_4 were used as internal references for ¹H and ¹³C NMR spectra, respectively. FABMS were obtained using glycerol as a matrix.

Plant Material. The leaves of *E. macrophyllus* ("Chapéude-couro") were purchased in São Paulo, Brazil, in October 1998. The plant was identified by Dr. T. Nakasumi (Instituto de Pesouisas de Plantas Medicinais do Brasil), and a voucher specimen has been deposited at Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University.

Extraction and Separation. The leaves (100 g) were extracted with MeOH (500 mL \times 3), and the extracts were partitioned between hexane (50 mL \times 3) and 90% aqueous MeOH (50 mL). The MeOH layer was partitioned with EtOAc (50 mL \times 3) and H_2O (50 mL), and then the H_2O layer was extracted with *n*-BuOH. The EtOAc-soluble portions (1.0 g) were subjected to a Si gel column chromatography (CHCl3-MeOH, 96:4) to afford fractions a (188 mg) and b (280 mg). Fraction **a** was separated by C_{18} column chromatography (MeOH-H₂O, 80:20) and by C₁₈ reversed-phase HPLC (Develosil ODS-HG-5, Nomura Co. Ltd, 1.0×25 cm: flow rate 2.5 mL/min; UV detection at 210 nm; eluent MeOH-H₂O, 70: 30) to afford clerodermic acid³ (2.8 mg) and patagonic acid^{4,5} (1.1 mg). Fraction **b** was subjected to passage over a C_{18} column (MeOH-H₂O, 70:30 \rightarrow MeOH) to give an alkaloidal fraction (25.3 mg), which was purified by Si gel column chromatography (hexane-acetone, $1:1 \rightarrow 1:5$) to yield echinophyllins \tilde{A}^2 (5, 7.3 mg) and B^2 (6, 4.1 mg) and fractions c (13 mg) and d (17 mg). Fraction c was purified by a reversedphase HPLC (Develosil ODS-HG-5, Nomura Co. Ltd.; 10 \times 250 mm, flow rate 2.5 mL/min, eluent CH₃CN-H₂O, 60:40, UV detection at 254 nm) to afford echinophyllins C (1, 2.1 mg, $t_{\rm R}$ 8.0 min), D (2, 1.5 mg, $t_{\rm R}$ 10.0 min), and F (3, 1.9 mg, $t_{\rm R}$ 7.4 min), while fraction **d** was purified by a reversed-phase HPLC (Mightysil RP₁₈, Kanto Chemical Co. Inc.; 10×250 mm, flow rate 2.5 mL/min, eluent CH₃CN-H₂O containing 0.1% TFA, 50:50, UV detection at 254 nm) to afford echinophyllin E (3, 1.7 mg, t_R 14.4 min). A part (80 mg) of the *n*-BuOH-soluble portion (1.56 g) was subjected to passage over a C₁₈ column (MeOH-H₂O, 50:50) to afford chichoric acid dimethyl ether⁶ (12 mg)

Echinophyllin C (1): colorless amorphous solid; $[\alpha]^{23}_{\text{D}}$ -25.9° (*c* 0.22, MeOH); UV (MeOH) λ_{max} (log ϵ) 213 (3.85) nm; IR (KBr) ν_{max} 3423 and 1680 cm⁻¹; ¹H and ¹³C NMR (Table 1); FABMS m/z 332 [M + H]⁺; HRFABMS m/z 332.2238 [M + H]⁺ (calcd for C₂₀H₃₀NO₃, 332.2226).

Echinophyllin D (2): colorless amorphous solid; $[\alpha]^{23}_{\rm D}$ –23.6° (*c* 0.30, EtOH); UV (MeOH) $\lambda_{\rm max}$ (log ϵ) 213 (4.03) and 280 (3.20) nm; IR (KBr) $\nu_{\rm max}$ 3430 and 1659 cm⁻¹; ¹H and ¹³C NMR (Table 1); FABMS *m*/*z* 452 [M + H]⁺; HRFABMS *m*/*z* 452.2770 [M + H]⁺ (calcd for C₂₈H₃₈NO₄, 452.2801).

Echinophyllin E (3): colorless amorphous solid; $[\alpha]^{23}_{\rm D} - 62.7^{\circ}$ (*c* 0.30, EtOH); UV (EtOH) $\lambda_{\rm max}$ (log ϵ) 210 (4.02), 291 (3.45), and 316 (3.45) nm; IR (KBr) $\nu_{\rm max}$ 3427, 1703, and 1633 cm⁻¹; ¹H and ¹³C NMR (Table 1); FABMS *m*/*z* 579 [M + H]⁺; HRFABMS *m*/*z* 579.3413 [M + H]⁺ (calcd for C₃₄H₄₇N₂O₆, 579.3449).

Echinophyllin F (4): colorless amorphous solid; $[\alpha]^{23}_{\rm D}$ – 34.5° (*c* 0.17, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ϵ) 213 (4.01) nm; IR (KBr) $\nu_{\rm max}$ 3423 and 1678 cm⁻¹; ¹H and ¹³C NMR (Table 1); FABMS *m*/*z* 332 [M + H]⁺; HRFABMS *m*/*z* 332.2217 [M + H]⁺ (calcd for C₂₀H₃₀NO₃, 332.2226).

Acknowledgment. We thank Dr. T. Nakasumi (Instituto de Pesouisas de Plantas Medicinais do Brasil) for the identification of the plant material. This work was supported, in part, by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

References and Notes

- Kobayashi, J.; Sekiguchi, M.; Shigemori, H.; Ohsaki, A. *J. Nat. Prod.* 2000, *63*, 375–377.
 Kobayashi, J.; Sekiguchi, M.; Shigemori, H.; Ohsaki, A. *Tetrahedron*
- (2) Kobayashi, J.; Sekiguchi, M.; Shigemori, H.; Ohsaki, A. *Tetrahedron Lett.* **2000**, *41*, 2939–2943.
- (3) Achari, B.; Chaudhuri, C.; Saha, C. R.; Dutta, P. K.; Pakrashi, S. C. *Phytochemistry* **1990**, *29*, 3671–3673.
- (4) Singh, P.; Jain, S.; Jakupovic, J. *Phytochemistry* **1988**, *27*, 1537–1539.
- (5) Rivera, A. P.; Faini, F.; Castillo, M. J. Nat. Prod. 1988, 51, 155–157.
 (6) Becker, H.; Hsieh, W. Ch. Z. Naturforsch. 1985, 40C, 585–587.

NP000355W